(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
immatcopy(Cons(x, xs)) → Cons(Nil, immatcopy(xs))
nestimeql(Nil) → number42(Nil)
nestimeql(Cons(x, xs)) → nestimeql(immatcopy(Cons(x, xs)))
immatcopy(Nil) → Nil
number42(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → nestimeql(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
immatcopy(Cons(x, xs)) → Cons(Nil, immatcopy(xs))
nestimeql(Nil) → number42(Nil)
nestimeql(Cons(x, xs)) → nestimeql(immatcopy(Cons(x, xs)))
immatcopy(Nil) → Nil
number42(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → nestimeql(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
number42/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
immatcopy(Cons(xs)) → Cons(immatcopy(xs))
nestimeql(Nil) → number42
nestimeql(Cons(xs)) → nestimeql(immatcopy(Cons(xs)))
immatcopy(Nil) → Nil
number42 → Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → nestimeql(x)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
immatcopy(Cons(xs)) → Cons(immatcopy(xs))
nestimeql(Nil) → number42
nestimeql(Cons(xs)) → nestimeql(immatcopy(Cons(xs)))
immatcopy(Nil) → Nil
number42 → Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Cons(Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → nestimeql(x)
Types:
immatcopy :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestimeql :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
immatcopy,
nestimeqlThey will be analysed ascendingly in the following order:
immatcopy < nestimeql
(8) Obligation:
Innermost TRS:
Rules:
immatcopy(
Cons(
xs)) →
Cons(
immatcopy(
xs))
nestimeql(
Nil) →
number42nestimeql(
Cons(
xs)) →
nestimeql(
immatcopy(
Cons(
xs)))
immatcopy(
Nil) →
Nilnumber42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
nestimeql(
x)
Types:
immatcopy :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestimeql :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
immatcopy, nestimeql
They will be analysed ascendingly in the following order:
immatcopy < nestimeql
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
immatcopy(
gen_Cons:Nil2_0(
n4_0)) →
gen_Cons:Nil2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
immatcopy(gen_Cons:Nil2_0(0)) →RΩ(1)
Nil
Induction Step:
immatcopy(gen_Cons:Nil2_0(+(n4_0, 1))) →RΩ(1)
Cons(immatcopy(gen_Cons:Nil2_0(n4_0))) →IH
Cons(gen_Cons:Nil2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
immatcopy(
Cons(
xs)) →
Cons(
immatcopy(
xs))
nestimeql(
Nil) →
number42nestimeql(
Cons(
xs)) →
nestimeql(
immatcopy(
Cons(
xs)))
immatcopy(
Nil) →
Nilnumber42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
nestimeql(
x)
Types:
immatcopy :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestimeql :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
immatcopy(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
nestimeql
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol nestimeql.
(13) Obligation:
Innermost TRS:
Rules:
immatcopy(
Cons(
xs)) →
Cons(
immatcopy(
xs))
nestimeql(
Nil) →
number42nestimeql(
Cons(
xs)) →
nestimeql(
immatcopy(
Cons(
xs)))
immatcopy(
Nil) →
Nilnumber42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
nestimeql(
x)
Types:
immatcopy :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestimeql :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
immatcopy(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
immatcopy(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(n4_0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
immatcopy(
Cons(
xs)) →
Cons(
immatcopy(
xs))
nestimeql(
Nil) →
number42nestimeql(
Cons(
xs)) →
nestimeql(
immatcopy(
Cons(
xs)))
immatcopy(
Nil) →
Nilnumber42 →
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Cons(
Nil))))))))))))))))))))))))))))))))))))))))))
goal(
x) →
nestimeql(
x)
Types:
immatcopy :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
nestimeql :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
number42 :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
immatcopy(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
immatcopy(gen_Cons:Nil2_0(n4_0)) → gen_Cons:Nil2_0(n4_0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)